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Higher Order Mode Interaction in
Nonreciprocal Periodic Structures

T. A. ENEGREN AND M. M. Z. KHARADLY

A bsfract —This paper is an extension of previous work on nonreciprocal

perirxKc structures where only dominant mode interaction was considered.

Higher order mode interaction is taken into account by using multimode

wave matrix analysis. Numerical results for the propagation coefficient

characteristics are given for a specific example of a twin-slab ferrite-loaded
rectangular wavegnide, periodically loaded with thin metaflic diaphragms.

These characteristics show similar trends to those observed in a previous

experimental investigation.

I. INTRODUCTION

I N A RECENT paper, wave matrix analysis has been

used to study nonreciprocal periodic structures [1].

The analysis presented in [1] enabled determination of the

propagation constants of the forward and backward travel-

ing Bloch waves, based on single dominant mode interac-

tion between the discontinuities. Comparison between the-

oretical prediction and measurement for a ferrite loaded

waveguide periodically loaded by thin inductive di-

aphragms showed that the single dominant-mode theory

gave good results only when higher order mode interaction

between the diaphragms could be neglected [1]. When the

spacing between the loading elements became small, there

were significant discrepancies between measurement and

prediction. This paper shows that these discrepancies can

be att~buted to the effects of higher order mode interac-

tion between the discontinuities.
Manuscript received April 22, 1981; revised November 24, 1981. The numerical analysis presented in [2] for the “scattering
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obtain the reflection and transmission coefficients of the

higher order modes. These coefficients can then be used in

an extended version of the wave matrix analysis to account

for the effects of higher order mode interaction. In th@

paper, this is done for the nonreciprocal periodic structure

shown in Fig. 1, which consists of a twin-slab ferrite loaded

waveguide, periodically loaded by an array of diaphragms.

The numerical results thus obtained confirm the trends

found in the experimental investigation of nonreciprocal

periodic structures [1].

II. ANALYSIS OF PERIODIC STRUCTURE

Consider the periodic structure shown in Fig. 1 consist-

ing of an array of diaphragms in a ferrite-loaded wave-

guide. lJnder normal operation, the structure will support a

forward and a backward traveling Bloch wave. One method

of determining the propagation constants of the Bloch

waves uses wave matrix analysis [1], [3]. In this method, the

periodic structure is subdivided into unit cells; the equiva-

lent circuit of a cell is shown in Fig. 2(a). The transmission

lines represent the electrical length of the unit cell and the

three element reactive network represents the equivalent

circuit for the diaphragm. Referring to Fig. 2(b), the quan-

tities R,2, R ~1and Tlz, Tzl are the reflection and transmis-

sion coefficients of the diaphragm for the dominant mode

(mode amplitudes given by al, b, and a{, b;). Thus the

wave m~atrix for the diaphragm is given by

[

l/T12 – R21/T12 1R12/T12 T21– R12R21/T12 “
~ (1)

This two-port junction representation of the diaphragm

will be adequate as long as the spacing between the di-

aphragms is large enough to allow the higher order modes

excited at one diaphragm to decay to negligible values at

the position of the next diaphragm. If this is not the case,

however, then an additional equivalent transmission line

must be introduced for each mode that appreciably inter-

acts with the adjacent diaphragms [3], as shown in Fig.

3(a). These transmission lines are coupled by the network

representing the diaphragm. The approach taken here, for

the nonreciprocal case, is essentially an extension of that

given in [3] for the reciprocal case.

Let N be the number of interacting modes. The mode

amplitudes are related by

b = RIa + T1lb’

~’=RIIb’+TIa (2)

where the matrices R1, R1l and T 1, T 11are reflection and

transmission coefficient matrices, respectively, and are de-

fined as follows:

reflection coefficient for the i th mode with the jth

mode incident from waveguide a;

transmission coefficient for the i th mode with the

jth mode incident from waveguide;

l,N;

I, II.

dielectric

Fig. 1. Periodic loading of theoretical twin-slab configuration of ferrite
by “inductive” diaphragms. Frequency= 90 GHz, a = I 143 cm, td =
().046cm, t,= ().255cm, w = 0.352 cm, relative permittmty of dielectric
= 1,0. Ferrite characteristics: relative permlttivity = 12.0; relative per-
meabdity = 0.96; off diagonal component of permeability tensor =
* JO.3.

~quwalent circuit for
diaphragm

(a)

Fig. 2. (a) Equivalent circuit for unit cell, (b) Equivalent circuit for
diaphragm.

Values for the matrix elements of R1, R1l and T1, T1l for

an infinitely thin conducting diaphragm may be found

using the numerical technique developed in [2]. Briefly, this

is done by allowing one mode of unit amplitude to be
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Fig. 4. Variation of propagation constants with spacing d, comparing
the rmatysis based on single-mode interaction with that including two
higher order modes: —single-mode interaction; ———higher
mode interaction included.

‘N–——L—t——‘d’
(b)

with increasing d. Therefore, the generalized matrix A ~, for

the unit cell shown in Fig. 3(b) is given by
Fig. 3. (a) 2N port junction representation of diaphragm. (b) Transmiss-

ion line representation of unit cell with discontinuity represented by a
2N port yrnction.

[ 1[~ = inverse (EI) O ~ inverse (EI) O
Uc

o ~11 d o 1~11“

(6)incident at the position of the diaphragm and calculating

the corresponding reflection and transmission coefficients,

This operation is performed in turn for each mode. Equa-

tion (2) can be cast into the form

Thus, the mode amplitudes for the unit cell will be related

by

[;]=4C[:]. (7)

[;]= Ad[;] (3)
The solution for Bloch waves requires that

[j=+]. (8)
The matrix Ad is the generalized wave matrix for the

diaphragm and is given by

IAd= Q –QR1l

RIQ TII _ RIQRII 1 and (8) lead to the following’ eigenvalue

det(AtiC-eY’U)=O (9)

unit matrix. The propagation constant y of

Bloch wave may be determined from (9).

Equations (7)

relation

where U is the

any particular

(4)

where Q = inverse (T 1).The generalized wave matrix for a

section of transmission line of length d/2 is given by

~–(%i+M;)d/2

~–(ai+@G)d/2

There are 2 N solutions to this equation, corresponding to

N modes traveling in the forward direction and N modes

traveling in the backward direction. In practice, only one

mode is allowed to propagate in each direction.

The implementation of the above analysis is illustrated

by considering a numerical example. In this example, with

the dimensions shown in Fig. 1 and the frequency set at 9.0

GHz, the width of the diaphragm was chosen so that the

first two evanescent modes were excited much more signifi-

cantly than the third- and higher order modes. Thus only

the first two evanescent modes were considered and this

limited the size of the reflection and transmission coeffi-

cient matrices to dimension 3. ,

The propagation constants for the propagating Bloch

waves are plotted in Fig. 4 against the spacing between the

diaphragms. The curves A, A’ and C, C’ are for the case

~–(d+J@)d/2

(5)

The sign of the propagation constants for the evanescent

modes is chosen such that the exponential term decreases
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Fig. 5. Variation of A~ with 1/d, comparing the analysis based on

single-mode and that including higher mode interaction: — single-
mode interaction; ———higher mode interaction included.

where the ferrite slabs are magnetized (A and A’ are for the

magnetizing sense of Fig. 1, C and C’ for the opposite

sense). The curves B and B’ are for the case where the

ferrite slabs are unmagnetized. The results of the analysis

based on only dominant mode interaction is indicated by

the solid lines. The effect of the inclusion of higher mode

interaction is indicated by the dashed lines.

These results show two main characteristics: 1) that the

propagation constants are generally higher than those pre-

dicted using dominant mode interaction only; and 2) that

the spacing of the periodic structure can be made smaller

before cutoff occurs. This is basically what has been ob-

served in the experimental investigation of [ 1]. A compari-

son of the differential phase-shift characteristics is shown

in Fig. 5. Generally, the differential phase shift per unit

length is reduced when the effects of higher mode interac-

tion are included. This also confirms the experimental

findings in [1].

III. CONCLUSIONS

A numerical technique has been presented to account for

the effects of higher mode interaction nonreciprocal peri-

odic structures. This involves expanding the wave transmis-

sion matrix for the discontinuity to include those higher

order modes which significantly interact. The reflection

and transmission coefficients for these modes are found

using the mode-matching technique. The numerical results

confirm the trends previously observed in an experimental

investigation.
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