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Higher Order Mode Interaction in
Nonreciprocal Periodic Structures

T. A. ENEGREN AND M. M. Z. KHARADLY

Abstract —This paper is an extension of previous work on nonreciprocal
periodic structures where only dominant mode interaction was considered.
Higher order mode interaction is taken into account by using multimode
wave matrix analysis. Numerical results for the propagation coefficient
characteristics are given for a specific example of a twin-slab ferrite-loaded
rectangular waveguide, periodically loaded with thin’ metallic diaphragms.
These characteristics show similar trends to those observed in a previous
expenmental investigation.

I. INTRODUCTION

N A RECENT paper, wave matrix analysis has been
used to study nonreciprocal per1odlc structures [1].
The analysis presented in [1] enabled determmatlon of the
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propagation constants of the forward and backward travel-
ing Bloch waves, based on single dominant mode interac-
tion between the discontinuities. Comparison between the-
oretical prediction and measurement for a ferrite: loaded
wavegulde periodically loaded by thin inductive di-
aphragms showed that the single dominant-mode theory
gave good results only when higher order mode intefaction
between the diaphragms could be neglected [1]. When the
spacing between the loading elements became small, there
were significant discrepancies between ‘measurement and
prediction. This paper shows that these dlscrepanmes can
be attributed to the effects of higher order mode mterac—
tion between the discontinuities.

The numerical analysis presented in [2] for the’ scattermg
problem of the infinitely thin metallic diaphragm in a
magnetized ferrite-loaded waveguide can be extended to
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obtain the reflection and transmission coefficients of the
higher order modes. These coefficients can then be used in
an extended version of the wave matrix analysis to account
for the effects of higher order mode interaction. In this
paper, this is done for the nonreciprocal periodic structure
shown in Fig. 1, which consists of a twin-slab ferrite loaded
waveguide, periodically loaded by an array of diaphragms.
The numerical results thus obtained confirm the trends
found in the experimental investigation of nonreciprocal
periodic structures [1].

II. ANALYSIS OF PERIODIC STRUCTURE

Consider the periodic structure shown in Fig. 1 consist-
ing of an array of diaphragms in a ferrite-loaded wave-
guide. Under normal operation, the structure will support a
forward and a backward traveling Bloch wave. One method
of determining the propagation constants of the Bloch
waves uses wave matrix analysis [1], [3]. In this method, the
periodic structure is subdivided into unit cells; the equiva-
lent circuit of a cell is shown in Fig. 2(a). The transmission
lines represent the electrical length of the unit cell and the
three element reactive network represents the equivalent
circuit for the diaphragm. Referring to Fig. 2(b), the quan-
tities R 5, R,; and T,, T;, are the reflection and transmis-
sion coefficients of the diaphragm for the dominant mode
(mode amplitudes given by a,, b, and aj, b}). Thus the
wave matrix for the diaphragm is given by

l/le - Rzl/le
R12/T12 T21 - R12R21/T12 '

This two-port junction representation of the diaphragm
will be adequate as long as the spacing between the di-
aphragms is large enough to allow the higher order modes
excited at one diaphragm to decay to negligible values at
the position of the next diaphragm. If this is not the case,
however, then an additional equivalent transmission line
must be introduced for each mode that appreciably inter-
acts with the adjacent diaphragms [3], as shown in Fig.
3(a). These transmission lines are coupled by the network
representing the diaphragm. The approach taken here, for
the nonreciprocal case, is essentially an extension of that
given in [3] for the reciprocal case.

Let N be the number of interacting modes. The mode
amplitudes are related by

(1)

b=Ra+T"
a’=R"'+T'a (2)
where the matrices R', R and 7', T" are reflection and
transmission coefficient matrices, respectively, and are de-
fined as follows:

RY, reflection coefficient for the ith mode with the jth
mode incident from waveguide «;

T° transmission coefficient for the ith mode with the
Jth mode incident from waveguide;

1, N;
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Fig. 1. Periodic loading of theoretical twin-slab configuration of ferrite
by “inductive” diaphragms. Frequency =90 GHz, a=1143 cm, ¢, =
0.046 cm, 1, = 0.255 cm, w = 0.352 cm, relative permittivity of dielectric
=1.0. Ferrite characteristics: relative permuttivity = 12.0; relative per-
meability = 0.96; off diagonal component of permeability tensor =
=+ ;0.3.
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(a) Equivalent circuit for unit cell. (b) Equivalent circuit for
diaphragm.

Fig. 2.

Values for the matrix elements of RY, R" and T, 7' for
an infinitely thin conducting diaphragm may be found
using the numerical technique developed in [2]. Briefly, this
is done by allowing one mode of unit amplitude to be
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Fig. 3. (a) 2N port junction representation of diaphragm. (b) Transmis-
sion line representation of unit cell with discontinuity represented by a
2 N port junction.

incident at the position of the diaphragm and calculating
the corresponding reflection and transmission coefficients.
This operation is performed in turn for each mode. Equa-
tion (2) can be cast into the form

HEZH! ()

The matrix A, is the generalized wave matrix for the
diaphragm -and is given by

Q - QRII ( 4)
RIQ TII _ RIQRII
where Q = inverse (T'!).The generalized wave matrix for a
section of transmission line of length d /2 is given by

- A

e—IBTd/2

A=

—(af +B3)d/2
e
E'=

(@i HiB)d /2

e—IBTd/2

—(ay +B;)d/2
e
EII —

o (anHBNIA/2 |

(5)
The sign of the propagation constants for the evanescent
modes is chosen such that the exponential term decreases

811

o
o

Propagation constant (rad./cm.)
N
[82]

Fig. 4. Variation of propagation constants with spacing 4, comparing
the analysis based on single-mode interaction with that including two
higher order modes: single-mode interaction; — — —higher
mode interaction included. '

with increasing d. Therefore, the generalized matrix 4, for
the unit cell shown in Fig. 3(b) is given by

4 —|inverse (E" o 4 | fnverse (EY) 0
uc 0 EII d 0 EII )
(6)

Thus, the mode amplitudes for the unit cell will be related

’ -]

The solution for Bloch waves requires that

[a]=5] ®

Equations (7) and (8) lead to the ‘following‘eigenvalue
relation
()

where U is the unit matrix. The propagation constant y of
any particular Bloch wave may be determined from (9).
There are 2N solutions to this equation, corresponding to
N modes traveling in the forward direction and N modes
traveling in the backward direction. In practice, only one
mode is allowed to propagate in each direction. \

The implementation of the above analysis is illustrated
by considering a numerical example. In this example, with
the dimensions shown in Fig. 1 and the frequency set at 9.0
GHz, the width of the diaphragm was chosen so that the
first two evanescent modes were excited much more signifi-
cantly than the third- and higher order modes. Thus only
the first two evanescent modes were considered and this
limited the size of the reflection and transmission coeffi-
cient matrices to dimension 3.

The propagation constants for the propagating Bloch
waves are plotted in Fig. 4 against the spacing between the
diaphragms. The curves 4, 4" and C, C’ are for the case

(7)

det(A, . —e™U)=0
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Fig. 5. Variation of AB with 1/d, comparing the analysis based on

single-mode and that including higher mode interaction: single-
mode interaction; — —-—higher mode interaction included.
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where the ferrite slabs are magnetized (A and A’ are for the
magnetizing sense of Fig. 1, C and C’ for the opposite
sense). The curves B and B’ are for the case where the
ferrite slabs are unmagnetized. The results of the analysis
based on only dominant mode interaction is indicated by
the solid lines. The effect of the inclusion of higher mode
interaction is indicated by the dashed lines.

These results show two main characteristics: 1) that the
propagation constants are generally higher than those pre-
dicted using dominant mode interaction only; and 2) that
the spacing of the periodic structure can be made smaller
before cutoff occurs. This is basically what has been ob-
served in the experimental investigation of [1]. A compari-
son of the differential phase-shift characteristics is shown
in Fig. 5. Generally, the differential phase shift per unit

length is reduced when the effects of higher mode interac-
tion are included. This also confirms the experimental
findings in [1].

III. CoNCLUSIONS

A numerical technique has been presented to account for
the effects of higher mode interaction nonreciprocal peri-
odic structures. This involves expanding the wave transmis-
sion matrix for the discontinuity to include those higher
order modes which significantly interact. The reflection
and transmission coefficients for these modes are found
using the mode-matching technique. The numerical results
confirm the trends previously observed in an experimental
investigation.
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